A Tungsten-Based Nanolaminated Ternary Carbide: (W,Ti)4C4–x
Nanolamellar transition metal carbides are gaining increasing interests because of the recent developments of their two-dimensional (2D) derivatives and promising performance for a variety of applications from energy storage, catalysis to transparent conductive coatings, and medicine. To develop mor...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2019-01, Vol.58 (2), p.1100-1106 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanolamellar transition metal carbides are gaining increasing interests because of the recent developments of their two-dimensional (2D) derivatives and promising performance for a variety of applications from energy storage, catalysis to transparent conductive coatings, and medicine. To develop more novel 2D materials, new nanolaminated structures are needed. Here we report on a tungsten-based nanolaminated ternary phase, (W,Ti)4C4–x , synthesized by an Al-catalyzed reaction of W, Ti, and C powders at 1600 °C for 4 h, under flowing argon. X-ray and neutron diffraction, along with Z-contrast scanning transmission electron microscopy, were used to determine the atomic structure, ordering, and occupancies. This phase has a layered hexagonal structure (P6 3 /mmc) with lattice parameters, a = 3.00880(7) Å, and c = 19.5633(6) Å and a nominal chemistry of (W,Ti)4C4–x (actual chemistry, W2.1(1)Ti1.6(1)C2.6(1)). The structure is comprised of layers of pure W that are also twin planes with two adjacent atomic layers of mixed W and Ti, on either side. The use of Al as a catalyst for synthesizing otherwise difficult to make phases, could in turn lead to the discovery of a large family of nonstoichiometric ternary transition metal carbides, synthesized at relatively low temperatures and shorter times. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.8b02226 |