Synthesis and Electronic Structure of Neutral Square-Planar High-Spin Iron(II) Complexes Supported by a Dianionic Pincer Ligand
Two square-planar high-spin FeII complexes bearing a dianionic pyridine dipyrrolate pincer ligand and a diethyl ether or tetrahydrofuran ligand were synthesized and structurally characterized, and their electronic structures were elucidated by a combined spectroscopic and computational approach. In...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2019-01, Vol.58 (2), p.1252-1266 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two square-planar high-spin FeII complexes bearing a dianionic pyridine dipyrrolate pincer ligand and a diethyl ether or tetrahydrofuran ligand were synthesized and structurally characterized, and their electronic structures were elucidated by a combined spectroscopic and computational approach. In contrast to previous examples, the S = 2 ground states of these square-planar FeII complexes do not require an overall anionic charge of the compounds or incorporation of alkali metal cations. The tetrahydrofuran complex exhibits an equilibrium between four- and five-coordinate species in solution, which was supported by 1H NMR and 57Fe Mössbauer spectroscopy and comparison to a structurally characterized five-coordinate pyridine dipyrrolate iron bis-pyridine adduct. A detailed computational analysis of the electronic structures of the four- and five-coordinate species via density functional theory provides insight into the origins of the unusual ground state configurations for FeII in a square-planar ligand field and explains the associated characteristic spectroscopic parameters. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.8b02730 |