Transmission Low-Frequency Raman Spectroscopy for Quantification of Crystalline Polymorphs in Pharmaceutical Tablets

The purpose of this study was to quantify polymorphs of active pharmaceutical ingredients in pharmaceutical tablets using a novel transmission low-frequency Raman spectroscopy method. We developed a novel transmission geometry for low-frequency Raman spectroscopy and compared quantitative ability in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2019-02, Vol.91 (3), p.1997-2003
Hauptverfasser: Inoue, Motoki, Hisada, Hiroshi, Koide, Tatsuo, Fukami, Toshiro, Roy, Anjan, Carriere, James, Heyler, Randy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to quantify polymorphs of active pharmaceutical ingredients in pharmaceutical tablets using a novel transmission low-frequency Raman spectroscopy method. We developed a novel transmission geometry for low-frequency Raman spectroscopy and compared quantitative ability in transmission mode versus backscattering mode using chemometrics. We prepared two series of tablets, (1) containing different weight-based contents of carbamazepine form III and (2) including different ratios of carbamazepine polymorphs (forms I/III). From the relationship between the contents of carbamazepine form III and partial least-squares (PLS) predictions in the tablets, correlation coefficients in transmission mode (R 2 = 0.98) were found to be higher than in backscattering mode (R 2 = 0.97). The root-mean-square error of cross-validation (RMSECV) of the transmission mode was 3.9 compared to 4.9 for the backscattering mode. The tablets containing a mixture of carbamazepine (I/III) polymorphs were measured by transmission low-frequency Raman spectroscopy, and it was found that the spectral shape changed according to the ratio of polymorphs: the relationship between the actual content and the prediction showed high correlation. These findings indicate that transmission low-frequency Raman spectroscopy possesses the potential to complement existing analytical methods for the quantification of polymorphs.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.8b04365