Effect of Oxygen on Thermal and Radiation-Induced Chemistries in a Model Organotin Photoresist
Organotin photoresists have shown promise for next-generation lithography because of their high extreme ultraviolet (EUV) absorption cross sections, their radiation sensitive chemistries, and their ability to enable high-resolution patterning. To better understand both temperature- and radiation-ind...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (4), p.4514-4522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organotin photoresists have shown promise for next-generation lithography because of their high extreme ultraviolet (EUV) absorption cross sections, their radiation sensitive chemistries, and their ability to enable high-resolution patterning. To better understand both temperature- and radiation-induced reaction mechanisms, we have studied a model EUV photoresist, which consists of a charge-neutral butyl–tin cluster. Temperature-programmed desorption (TPD) showed very little outgassing of the butyl–tin resist in ultrahigh vacuum and excellent thermal stability of the butyl groups. TPD results indicated that decomposition of the butyl–tin resist was first order with a fairly constant decomposition energy between 2.4 and 3.0 eV, which was determined by butyl group desorption. Electron-stimulated desorption (ESD) showed that butyl groups were the primary decomposition product for electron kinetic energies expected during EUV exposures. X-ray photoelectron spectroscopy was performed before and after low-energy electron exposure to evaluate the compositional and chemical changes in the butyl–tin resists after interaction with radiation. The effect of molecular oxygen during ESD experiments was evaluated, and it was found to enhance butyl group desorption during exposure and resulted in a significant increase in the ESD cross section by over 20%. These results provide mechanistic information that can be applied to organotin EUV photoresists, where a significant increase in photoresist sensitivity may be obtained by varying the ambient conditions during EUV exposures. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b16048 |