Enhanced treatment effect of nanoparticles containing cisplatin and a GSH-reactive probe compound
Cisplatin is a highly effective antitumor drug, which can kill cancer cells by crossing-linking DNA and inhibiting transcription, but this process is limited by the combination of cisplatin and many endogenous nucleophiles, such as glutathione (GSH). Thus, when cisplatin enter cells, it is potential...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering. C, Biomimetic Materials, Sensors and Systems Biomimetic Materials, Sensors and Systems, 2019-03, Vol.96, p.635-641 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cisplatin is a highly effective antitumor drug, which can kill cancer cells by crossing-linking DNA and inhibiting transcription, but this process is limited by the combination of cisplatin and many endogenous nucleophiles, such as glutathione (GSH). Thus, when cisplatin enter cells, it is potentially vulnerable to cytoplasmic inactivation by GSH. To settle this bottleneck, we designed and synthesized a probe compound (Probe 1) and fabricated pH-responsed cisplatin, Probe 1-loaded lipid-polymer hybrid NanoParticles (CPNPs) using a single-step sonication method. Probe 1 can specifically bind to GSH, thus avoiding the combination of GSH and cisplatin, and enhancing the pharmacological activity of cisplatin. In vitro studies have suggested CPNPs, compared with cisplatin, loaded lipid-polymer hybrid NanoParticles CNPs (Not contain Probe 1), could efficiently kill MCF-7 human breast cancer cells and A549 human nonsmall lung cancer cell. Hence, the CPNPs provided a new idea for treating cancer. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2018.11.039 |