Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: A cost-effective approach for wastewater treatment

There is a dire necessity of developing low cost waste water treatment systems, for the efficient removal of noxious heavy metals (and metalloids) such as Arsenic (As) and Cadmium (Cd). Magnetic biopolymer (CABs-MO) was synthesized by the entrapment of nanocrystalline MnO2 in the polymeric microcaps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2019-03, Vol.234, p.8-20
Hauptverfasser: Shim, Jaehong, Kumar, Manish, Mukherjee, Santanu, Goswami, Ritusmita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a dire necessity of developing low cost waste water treatment systems, for the efficient removal of noxious heavy metals (and metalloids) such as Arsenic (As) and Cadmium (Cd). Magnetic biopolymer (CABs-MO) was synthesized by the entrapment of nanocrystalline MnO2 in the polymeric microcapsules of calcium alginate (CABs). Batch experiments were conducted under constant pH (6.5), temperature (25OC), different initial concentrations (30–300 mg L−1) and contact times (0–48 h) to study the adsorption isotherms and removal kinetics of pristine (CABs) and hybrid biopolymer (CABs-MO) for the removal of As and Cd. The pseudo-equilibrium process was mathematically well explained by the pseudo-second-order kinetic (R2 ≥ 0.99) and Langmuir isotherm model (R2 ≥ 0.99) with the highest monolayer sorption capacity of 63.6 mg g−1 for Cd on CABs-MO. The As removal rate was maximum up to 6.5 mg g−1 after 12 h of contact period in a single contaminant system than in the mixed contaminant (As + Cd) system (0.8 mg g−1), though the effect was non-significant for Cd (p 
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2018.12.084