Redefining MDR-TB: Comparison of Mycobacterium tuberculosis clinical isolates from Russia and Taiwan
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are global challenges due to the limited number of effective drugs for treatment. Treatment with less than 4–5 effective drugs might lead to the further emergence of drug resistance and poor clinical outcomes. For better pre...
Gespeichert in:
Veröffentlicht in: | Infection, genetics and evolution genetics and evolution, 2019-08, Vol.72, p.141-146 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis are global challenges due to the limited number of effective drugs for treatment. Treatment with less than 4–5 effective drugs might lead to the further emergence of drug resistance and poor clinical outcomes. For better prediction of treatment outcomes, we compared drug-resistance profiles of consecutive clinical MDR Mycobacterium tuberculosis isolates from high- and low-burden settings.
This was a retrospective cohort study. We analysed 225 and 229 MDR isolates from Moscow (Russia) and Taiwan, respectively, obtained between 2014 and 2015. Drug susceptibility testing was performed by the Bactec MGIT 960 automated system and the agar proportion method. Detection of resistance-associated mutations in the M. tuberculosis genome was carried out by an array and/or sequencing of selected loci.
The principal differences between resistance profiles of MDR isolates in the two countries were the percentages of pre-XDR (40.9% vs. 14.8%) and XDR (34.7% vs. 1.7%) isolates, both of which were significantly higher in Moscow isolates. Forty-eight (33%) of 147 MDR and pre-XDR Russian isolates fall into a group with less than four effective drugs, which accounts for 40% (N = 120) of these isolates. The other 60% in this group were XDR strains (N = 72). Consequently, the average number of effective anti-tuberculosis drugs for MDR-TB treatment was lower for Russian isolates (3 vs. 7). Furthermore, a notable percentage (9%) of isolates resistant to kanamycin harboured mutations in the whiB7 locus, which was not detected by molecular tests targeting common mutations in the rrs and eis loci. We found that 98.2% and 45.9% of MDR isolates from Moscow and Taiwan, respectively, were resistant to streptomycin.
Molecular tests for detecting resistance to drugs other than rifampicin, isoniazid, fluoroquinolones, and second-line injectable drugs are needed for individualized therapy. The conventional MDR treatment schemes most probably fail in these cases due to the limited number of effective drugs.
[Display omitted]
•This was a retrospective cohort study. We analyzed 225 and 229 MDR isolates from Moscow and Taiwan from 2014 to 2015.•The percentage of pre- (40.9% vs 14.8%) and XDR (34.7% vs 1.7%) stains were significantly higher in Moscow collection.•A notable percentage (9%) of isolates resistant to kanamycin harbored mutations in the whiB7 locus. |
---|---|
ISSN: | 1567-1348 1567-7257 |
DOI: | 10.1016/j.meegid.2018.12.031 |