Mechanism of oxidation and catalysis of organic matter abiotic humification in the presence of MnO2

Humification plays a critical role in the environmental fate of organic wastes, and MnO2 holds great promise for enhancing this reaction. However, the effects of MnO2 on the enhancement of the humification reaction remain ambiguous. To better reveal the mechanism by which MnO2 enhances the reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2019-03, Vol.77, p.167-173
Hauptverfasser: Zhang, Yingchao, Yue, Dongbei, Wang, Xu, Song, Wenfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Humification plays a critical role in the environmental fate of organic wastes, and MnO2 holds great promise for enhancing this reaction. However, the effects of MnO2 on the enhancement of the humification reaction remain ambiguous. To better reveal the mechanism by which MnO2 enhances the reaction and investigate the fate of the humification products, abiotic humification experiments were performed using increasing concentrations of dissolved organic matter (DOM) to a fixed amount of MnO2. DOM was represented by model humic precursors consisting of catechol, glucose and glycine. The results indicate that the reduction of MnO2 played a dominant role in the formation of fulvic-like acids (FLAs), and the subsequent reduction products, MnOOH and Mn(II), acted as catalysts in the formation of humic-like acids (HLAs). Moreover, CO2 release occurred during the formation of FLAs, and a strong linear correlation between CO2 release and the formation of FLAs was observed (p 
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2018.07.002