Synthesis of A-ring quinolones, nine-membered oxolactams and spiroindoles by oxidative transformations of 2,3-indolotriterpenoids
This paper describes an access to new nitrogen-containing heterocyclic triterpenoids by the reaction of 2,3-indolotriterpenoids with ozone and dimethyldioxirane. The oxidation of indolo-fused 28-oxo-allobetulin or methyl platanoate with ozone led to a mixture of a quinolone as the major product and...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2019-01, Vol.17 (3), p.585-597 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes an access to new nitrogen-containing heterocyclic triterpenoids by the reaction of 2,3-indolotriterpenoids with ozone and dimethyldioxirane. The oxidation of indolo-fused 28-oxo-allobetulin or methyl platanoate with ozone led to a mixture of a quinolone as the major product and a nine-membered 2,3-seco-2-oxolactam and three different types of spiroindoles as byproducts. The formation of quinolone and 2,3-seco-2-oxolactam derivatives could be explained by the standard 1,3-dipolar cycloaddition of ozone to the C2(3)-double bond of the triterpene core similar to the products observed in the ozonolysis of indoles in the Witkop-Winterfeldt oxidation (WWO). The formation of spiroindoles was unexpected and could be explained through the 1,2-cycloaddition of ozone to the C2(3)-double bond with consecutive intramolecular rearrangements of the 2,3-epoxy-intermediate. These spiroindoles seem to be novel structures observed in the WWO reaction. The formation of only two isomeric triterpene spiroindolinones was achieved by the oxidation of 2,3-indolo-28-oxo-allobetulin with dimethyldioxirane that could be explained by the rearrangement of the 2,3-epoxy-intermediate. 19β,28-Epoxy-18α-olean-28-oxo-2-nor-2,3-4'(1H)-quinolone was the most active against HPV-11 with EC50 0.45 μM and SI50 322 in a primary assay and SI90 < 10 against HPV-16 in a secondary assay. The oxidative transformations of indolotriterpenoids have great potential for further modifications towards the preparation of new biologically active compounds. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c8ob02624f |