Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice

Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-11, Vol.31 (47), p.e1802697-n/a
Hauptverfasser: Gebhardt, Julian, Rappe, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e1802697
container_title Advanced materials (Weinheim)
container_volume 31
creator Gebhardt, Julian
Rappe, Andrew M.
description Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials. Perovskites are versatile ABX3 crystals, hosting many intriguing physical properties. While most are inorganic compounds with cationic A‐ and B‐, and anionic X‐sites, recently, the introduction of organic ions (hybrid perovskites) and structures with inverted ionic charges (inverse (hybrid) perovskites) have been explored. Thus, the combinatorial space for design with optimized properties has new dimensions.
doi_str_mv 10.1002/adma.201802697
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2159324317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159324317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5187-eefe3367103f1ab73a90ab18bd685cab534c4b52b551e84e0486a9c660b0473c3</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EoqWwMqJILCwp13b8YqvKq1KrMsBsOY5DU_IocQL070lpAYmFybrWuUdXB6FTDEMMQC5NUpghASyBcCX2UB8zgsMIFNtHfVCUhYpHsoeOvF8CgOLAD1GPAhMglOqj8Sz7CEyZBDPT2MVVMK-fTZnZr69JWe2mSVX6ICuDZuGCB1dXb_4la1wwNU2TWXeMDlKTe3eyewfo6fbmcXwfTud3k_FoGlqGpQidSx2lXGCgKTaxoEaBibGMEy6ZNTGjkY1iRmLGsJORg0hyoyznEEMkqKUDdLH1rurqtXW-0UXmrctzU7qq9ZpgpiiJKBYdev4HXVZtXXbXaUIxY5JLITtquKVsXXlfu1Sv6qww9Vpj0Ju8epNX_-TtFs522jYuXPKDf_fsALUF3rPcrf_R6dH1bPQr_wSM-IQS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315586878</pqid></control><display><type>article</type><title>Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice</title><source>Wiley Journals</source><creator>Gebhardt, Julian ; Rappe, Andrew M.</creator><creatorcontrib>Gebhardt, Julian ; Rappe, Andrew M.</creatorcontrib><description>Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials. Perovskites are versatile ABX3 crystals, hosting many intriguing physical properties. While most are inorganic compounds with cationic A‐ and B‐, and anionic X‐sites, recently, the introduction of organic ions (hybrid perovskites) and structures with inverted ionic charges (inverse (hybrid) perovskites) have been explored. Thus, the combinatorial space for design with optimized properties has new dimensions.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201802697</identifier><identifier>PMID: 30570799</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Composition ; Crystal structure ; DFT calculations ; hybrid perovskites ; Inorganic compounds ; inverse hybrid perovskites ; materials design ; Materials science ; Organic chemistry ; Perovskite structure ; Perovskites ; photovoltaic ; Photovoltaic cells ; Playgrounds ; Stoichiometry</subject><ispartof>Advanced materials (Weinheim), 2019-11, Vol.31 (47), p.e1802697-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5187-eefe3367103f1ab73a90ab18bd685cab534c4b52b551e84e0486a9c660b0473c3</citedby><cites>FETCH-LOGICAL-c5187-eefe3367103f1ab73a90ab18bd685cab534c4b52b551e84e0486a9c660b0473c3</cites><orcidid>0000-0002-4265-784X ; 0000-0003-4620-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201802697$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201802697$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30570799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gebhardt, Julian</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><title>Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials. Perovskites are versatile ABX3 crystals, hosting many intriguing physical properties. While most are inorganic compounds with cationic A‐ and B‐, and anionic X‐sites, recently, the introduction of organic ions (hybrid perovskites) and structures with inverted ionic charges (inverse (hybrid) perovskites) have been explored. Thus, the combinatorial space for design with optimized properties has new dimensions.</description><subject>Composition</subject><subject>Crystal structure</subject><subject>DFT calculations</subject><subject>hybrid perovskites</subject><subject>Inorganic compounds</subject><subject>inverse hybrid perovskites</subject><subject>materials design</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Playgrounds</subject><subject>Stoichiometry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EoqWwMqJILCwp13b8YqvKq1KrMsBsOY5DU_IocQL070lpAYmFybrWuUdXB6FTDEMMQC5NUpghASyBcCX2UB8zgsMIFNtHfVCUhYpHsoeOvF8CgOLAD1GPAhMglOqj8Sz7CEyZBDPT2MVVMK-fTZnZr69JWe2mSVX6ICuDZuGCB1dXb_4la1wwNU2TWXeMDlKTe3eyewfo6fbmcXwfTud3k_FoGlqGpQidSx2lXGCgKTaxoEaBibGMEy6ZNTGjkY1iRmLGsJORg0hyoyznEEMkqKUDdLH1rurqtXW-0UXmrctzU7qq9ZpgpiiJKBYdev4HXVZtXXbXaUIxY5JLITtquKVsXXlfu1Sv6qww9Vpj0Ju8epNX_-TtFs522jYuXPKDf_fsALUF3rPcrf_R6dH1bPQr_wSM-IQS</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Gebhardt, Julian</creator><creator>Rappe, Andrew M.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4265-784X</orcidid><orcidid>https://orcid.org/0000-0003-4620-6496</orcidid></search><sort><creationdate>20191101</creationdate><title>Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice</title><author>Gebhardt, Julian ; Rappe, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5187-eefe3367103f1ab73a90ab18bd685cab534c4b52b551e84e0486a9c660b0473c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Composition</topic><topic>Crystal structure</topic><topic>DFT calculations</topic><topic>hybrid perovskites</topic><topic>Inorganic compounds</topic><topic>inverse hybrid perovskites</topic><topic>materials design</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Playgrounds</topic><topic>Stoichiometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gebhardt, Julian</creatorcontrib><creatorcontrib>Rappe, Andrew M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gebhardt, Julian</au><au>Rappe, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>31</volume><issue>47</issue><spage>e1802697</spage><epage>n/a</epage><pages>e1802697-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials. Perovskites are versatile ABX3 crystals, hosting many intriguing physical properties. While most are inorganic compounds with cationic A‐ and B‐, and anionic X‐sites, recently, the introduction of organic ions (hybrid perovskites) and structures with inverted ionic charges (inverse (hybrid) perovskites) have been explored. Thus, the combinatorial space for design with optimized properties has new dimensions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30570799</pmid><doi>10.1002/adma.201802697</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4265-784X</orcidid><orcidid>https://orcid.org/0000-0003-4620-6496</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-11, Vol.31 (47), p.e1802697-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2159324317
source Wiley Journals
subjects Composition
Crystal structure
DFT calculations
hybrid perovskites
Inorganic compounds
inverse hybrid perovskites
materials design
Materials science
Organic chemistry
Perovskite structure
Perovskites
photovoltaic
Photovoltaic cells
Playgrounds
Stoichiometry
title Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mix%20and%20Match:%20Organic%20and%20Inorganic%20Ions%20in%20the%20Perovskite%20Lattice&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gebhardt,%20Julian&rft.date=2019-11-01&rft.volume=31&rft.issue=47&rft.spage=e1802697&rft.epage=n/a&rft.pages=e1802697-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201802697&rft_dat=%3Cproquest_cross%3E2159324317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315586878&rft_id=info:pmid/30570799&rfr_iscdi=true