Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice
Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoret...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-11, Vol.31 (47), p.e1802697-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials.
Perovskites are versatile ABX3 crystals, hosting many intriguing physical properties. While most are inorganic compounds with cationic A‐ and B‐, and anionic X‐sites, recently, the introduction of organic ions (hybrid perovskites) and structures with inverted ionic charges (inverse (hybrid) perovskites) have been explored. Thus, the combinatorial space for design with optimized properties has new dimensions. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201802697 |