Plasmonic p–n Junction for Infrared Light to Chemical Energy Conversion
Infrared (IR) light represents an untapped energy source accounting for almost half of all solar energy. Thus, there is a need to develop systems to convert IR light to fuel and make full use of this plentiful resource. Herein, we report photocatalytic H2 evolution driven by near- to shortwave-IR li...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-02, Vol.141 (6), p.2446-2450 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Infrared (IR) light represents an untapped energy source accounting for almost half of all solar energy. Thus, there is a need to develop systems to convert IR light to fuel and make full use of this plentiful resource. Herein, we report photocatalytic H2 evolution driven by near- to shortwave-IR light (up to 2500 nm) irradiation, based on novel CdS/Cu7S4 heterostructured nanocrystals. The apparent quantum yield reached 3.8% at 1100 nm, which exceeds the highest efficiencies achieved by IR light energy conversion systems reported to date. Spectroscopic results revealed that plasmon-induced hot-electron injection at p–n heterojunctions realizes exceptionally long-lived charge separation (>273 μs), which results in efficient IR light to hydrogen conversion. These results pave the way for the exploration of undeveloped low-energy light for solar fuel generation. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.8b11544 |