Analytic Mode Normalization for the Kerr Nonlinearity Parameter: Prediction of Nonlinear Gain for Leaky Modes
Based on the resonant-state expansion with analytic mode normalization, we derive a general master equation for the nonlinear pulse propagation in waveguide geometries that is valid for bound and leaky modes. In the single-mode approximation, this equation transforms into the well-known nonlinear Sc...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (21), p.213905-213905, Article 213905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the resonant-state expansion with analytic mode normalization, we derive a general master equation for the nonlinear pulse propagation in waveguide geometries that is valid for bound and leaky modes. In the single-mode approximation, this equation transforms into the well-known nonlinear Schrödinger equation with a closed expression for the Kerr nonlinearity parameter. The expression for the Kerr nonlinearity parameter can be calculated on the minimal spatial domain that spans only across the regions of spatial inhomogeneities. It agrees with previous vectorial formulations for bound modes, while for leaky modes the Kerr nonlinearity parameter turns out to be a complex number with the imaginary part providing either nonlinear loss or even gain for the overall attenuating pulses. This nonlinear gain results in more intense pulse compression and stronger spectral broadening, which is demonstrated here on the example of liquid-filled capillary-type fibers. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.213905 |