De novo synthesis of sphingolipids plays an important role during in vitro encystment of Entamoeba invadens

Entamoeba invadens is a protozoan, which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment in vitro. Here we report for the first time the role of the de novo synthesis pathway of sphingolipids during the encystment of E. invadens. In silico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2019-01, Vol.508 (4), p.1031-1037
Hauptverfasser: Jáuregui-Wade, José Manuel, Valdés, Jesús, Ayala-Sumuano, Jorge Tonatiuh, Ávila-García, Ricardo, Cerbón-Solorzano, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Entamoeba invadens is a protozoan, which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment in vitro. Here we report for the first time the role of the de novo synthesis pathway of sphingolipids during the encystment of E. invadens. In silico analysis showed that this parasite has six putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the Lag1p motif, a region conserved in the ceramide synthases of multiple organisms, suggesting that they might be bona fide CerS. The six genes of E. invadens are differentially expressed at different time intervals in both stages trophozoite and cyst, based on the results obtained through qRT-PCR assays, the genes involved in the synthesis of sphingolipids with long-chain fatty acids CerS 2,3,4 (EIN_046610, EIN_097030, EIN_130350) have maximum points of relative expression in both stages of the E. invadens life cycle, which strongly suggest that the signaling exerted from the synthesis pathway of sphingolipids is essential for the encystment of E. invadens, since the generation of the more abundant sphingomyelin (SM) subspecies with long-chain fatty acids are fundamental for the parasite to reach its conversion from trophozoite to cyst. When myriocin was used as an inhibitor of serine palmitoyl CoA transferase (SPT), first enzyme in the de novo biosynthesis of sphingolipids, the trophozoites of E. invadens were unable to reach the encystment. Since the effect of myriocin was reversed with exogenous d-erythrosphingosine (DHS), it was demonstrated that the inhibition was specific and it was confirmed that the synthesis of sphingolipids play an essential role during the encystment process of E. invadens. •Entamoeba invadens is able to synthesize sphingolipids and their synthesis results in DAG production which activates PKC.•PKC is involved in E. invadens growth and encystment.•Myriocin inhibits the first enzyme of sphingolipid synthesis which result in lower DAG production, and diminishing encystment.•Six ceramide synthases are differentially expressed in cysts, thus synthesis of sphingolipids is required for encystment.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.12.005