Ultrasonic sector imaging using plane wave synthetic focusing with a convex array transducer

Synthetic transmit focusing (STF) methods using unfocused waves or plane waves (PWs) have recently been investigated extensively. However, STF using PWs with a convex array (PWSTF-CA) has not been rigorously studied for high-resolution sector imaging. In this paper, the authors suggest an analytical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2018-11, Vol.144 (5), p.2627-2644
Hauptverfasser: Bae, Sua, Kim, Pilsu, Song, Tai-kyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthetic transmit focusing (STF) methods using unfocused waves or plane waves (PWs) have recently been investigated extensively. However, STF using PWs with a convex array (PWSTF-CA) has not been rigorously studied for high-resolution sector imaging. In this paper, the authors suggest an analytical model for accurate characterization of the spatial beam patterns of PWSTF-CA using a large range of either uniformly or non-uniformly distributed PW angles. On the basis of the model, a frame-based PWSTF-CA approach with non-uniform PW angles is suggested to achieve superior image quality at a higher frame rate than conventional transmit focusing (CTF). The analytical model can also be used for optimal selection of a set of PW angles to scan the entire sectorial field of view and its subsets employed for STF at each imaging point. The authors also investigate how to select transmit subarrays for each of the PWs to obtain the best spatial resolution. A theoretical analysis and simulations are conducted for the verification of the analytical model and the optimal utilization strategy of PWSTF-CA. The results indicate that the PWSTF-CA improves not only the frame rate but also the contrast, signal-to-noise ratio, and resolution compared with the CTF, as in the case of PWSTF with linear arrays.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.5065391