Periostin induces kidney fibrosis after acute kidney injury via the p38 MAPK pathway

Periostin plays a crucial role in fibrosis, and acute kidney injury results in a high risk of progression to chronic kidney disease. Therefore, we hypothesized that periostin was involved in the progression of acute kidney injury to kidney fibrosis. Unilateral ischemia-reperfusion injury (UIRI) was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2019-03, Vol.316 (3), p.F426-F437
Hauptverfasser: An, Jung Nam, Yang, Seung Hee, Kim, Yong Chul, Hwang, Jin Ho, Park, Jae Yoon, Kim, Dong Ki, Kim, Jin Hyuk, Kim, Dae Woo, Hur, Dong Gu, Oh, Yun Kyu, Lim, Chun Soo, Kim, Yon Su, Lee, Jung Pyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periostin plays a crucial role in fibrosis, and acute kidney injury results in a high risk of progression to chronic kidney disease. Therefore, we hypothesized that periostin was involved in the progression of acute kidney injury to kidney fibrosis. Unilateral ischemia-reperfusion injury (UIRI) was induced in 7- to 8-wk-old male wild-type and periostin-null mice, and the animals were observed for 6 wk. In vitro, human kidney-2 cells and primary-cultured human tubular epithelial cells were incubated under hypoxic conditions (5% O , 5% CO , and 90% N ) for 5 days. The cells were also cultured with recombinant periostin (rPeriostin) and a p38 mitogen-activated protein kinase (MAPK) inhibitor in a hypoxic incubator. At 6 wk after UIRI, interstitial fibrosis/tubular atrophy was significantly alleviated in periostin-null mice compared with wild-type controls. In addition, periostin-null mice had attenuated expression of fibrosis/apoptosis markers and phosphorylated-p38 MAPK compared with wild-type controls. In vitro, hypoxic injury increased the expression of fibrosis markers, periostin, and phosphorylated-p38 MAPK, which was comparable to or substantially greater than their expression levels following treatment with recombinant transforming growth factor-β1 under normoxic conditions. Furthermore, rPeriostin treatment under hypoxic conditions enhanced fibrosis/apoptosis markers and phosphorylated-p38 MAPK. In contrast, p38 MAPK inhibition ameliorated hypoxia-induced fibrosis, and the addition of the p38 MAPK inhibitor to rPeriostin significantly ameliorated the changes induced by rPeriostin. In conclusion, periostin promotes kidney fibrosis via the p38 MAPK pathway following acute kidney injury triggered by a hypoxic or ischemic insult. Periostin ablation may protect against chronic kidney disease progression.
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00203.2018