Applicability of Soil Concentration for VOC-Contaminated Site Assessments Explored Using Field Data from the Beijing-Tianjin-Hebei Urban Agglomeration

A total of 128 available soil–soil gas data pairs of benzene were collected from 5 contaminated sites in the Beijing-Tianjin-Hebei urban agglomeration. Soil gas concentrations predicted by the linear model and the dual equilibrium desorption (DED) model were compared with measured values. Although t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2019-01, Vol.53 (2), p.789-797
Hauptverfasser: Zhang, Ruihuan, Jiang, Lin, Zhong, Maosheng, Han, Dan, Zheng, Rui, Fu, Quankai, Zhou, Youya, Ma, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A total of 128 available soil–soil gas data pairs of benzene were collected from 5 contaminated sites in the Beijing-Tianjin-Hebei urban agglomeration. Soil gas concentrations predicted by the linear model and the dual equilibrium desorption (DED) model were compared with measured values. Although the immersion of soil samples in methanol during sampling and preservation was specified to minimize volatilization losses and biodegradation, the study still found that many points with high soil gas concentrations correspond to unreasonably low soil concentrations. Further analysis revealed that the soil matrices of these points are basically composed of sandy and silty soils, given that soil gas collected may migrate from more contaminated soils nearby due to the large porosity and soil benzene escapes more easily during sampling in the coarser soil particles. Therefore, for sandy and silty soil, collecting soil gas would be more reasonable for screening the vapor intrusion (VI) pathway. For clay, the combination of bulk soil concentration and the DED model will be more convenient. Defaulting f as 1, as recommended by previous studies in the DED, would not be suitable for all cases, and this value needs to be further explored to revise the DED model for future applications.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.8b03241