Fully Automated 89Zr Labeling and Purification of Antibodies

Dozens of monoclonal antibodies (mAbs) have been approved for clinical use, and hundreds more are under development. To support these developments and facilitate a personalized medicine approach, PET imaging and quantification of mAbs, after chelation with desferrioxamine B (DFO) and radiolabeling w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nuclear medicine (1978) 2019-05, Vol.60 (5), p.691-695
Hauptverfasser: Poot, Alex J, Adamzek, Kevin WA, Windhorst, Albert D, Vosjan, Maria JWD, Kropf, Saskia, Wester, Hans-Jurgen, van Dongen, Guus AMS, Vugts, Danielle J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dozens of monoclonal antibodies (mAbs) have been approved for clinical use, and hundreds more are under development. To support these developments and facilitate a personalized medicine approach, PET imaging and quantification of mAbs, after chelation with desferrioxamine B (DFO) and radiolabeling with 89Zr, has become attractive. Also, the use of 89Zr-mAbs in preclinical and clinical studies is expanding rapidly. Despite these rapid developments, 89Zr radiolabeling is still performed manually. Therefore, we aimed to develop a simple, fully automated, good-manufacturing-practice (GMP)–compliant production procedure for the 89Zr labeling of mAbs. Such procedures should increase the robustness and capacity of 89Zr-mAb production while minimizing the radiation dose to the operator. Here, the procedures for fully automated 89Zr-mAb production are described and applied to produce batches of 89Zr-DFO-N-suc-cetuximab and 89Zr-DFO-N-suc-rituximab suitable for clinical use. Both products had to meet the GMP-compliant quality standards with respect to yield, radiochemical purity, protein integrity, antigen binding, sterility, and endotoxin levels. Methods: Automated 89Zr labeling of mAbs was developed on a Scintomics GRP 2V module and comprised the following steps: reagent transfer to the 89Zr-containing reaction vial, mixing of the reagents followed by a 60-min reaction at room temperature to obtain optimal radiolabeling yields, and product purification using a PD-10 desalting column. Results: Radiochemical yields of 89Zr-DFO-N-suc-cetuximab and 89Zr-DFO-N-suc-rituximab were all more than 90% according to instant thin-layer chromatography. Isolated yields were 74.6% ± 2.0% and 62.6% ± 3.0% for 89Zr-DFO-N-suc-cetuximab and 89Zr-DFO-N-suc-rituximab, respectively, which are similar to isolated yields obtained using GMP protocols for manual 89Zr labeling of mAbs. To meet the GMP-compliant quality standards, only the radiochemically pure fractions were collected from PD-10, resulting in a lower isolated yield than the radiochemical yield according to instant thin-layer chromatography. The radiochemical purity and protein integrity were more than 95% for both products, and the antigen binding was 95.6% ± 0.6% and 87.1% ± 2.2% for 89Zr-DFO-N-suc-cetuximab and 89Zr-DFO-N-suc-rituximab, respectively. The products were sterile, and the endotoxin levels were within acceptable limits, allowing future clinical production using this procedure. Conclusion: Procedures for fully au
ISSN:0161-5505
1535-5667
DOI:10.2967/jnumed.118.217158