Influences of Phenyl Rings on NHC Ligands with Bicyclic Architectures

In addition to phosphanes, olefins, amines, and amides, over the past two decades N-heterocyclic carbene (NHC) has emerged as a useful alternative ligand. Based on a number of derivatization studies on NHC ligands, imidazol-2-ylidene and imidazolin-2-ylidene became the standard heterocyclic form, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2019-01, Vol.84 (1), p.128-139
Hauptverfasser: Ando, Shin, Miyata, Ryota, Matsunaga, Hirofumi, Ishizuka, Tadao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to phosphanes, olefins, amines, and amides, over the past two decades N-heterocyclic carbene (NHC) has emerged as a useful alternative ligand. Based on a number of derivatization studies on NHC ligands, imidazol-2-ylidene and imidazolin-2-ylidene became the standard heterocyclic form, and bulky substituents have commonly been introduced on the nitrogen(s) adjacent to carbenic carbons. Our group previously developed NHCs equipped with noncarbenic carbons with a bicyclic architecture that gives them unique steric properties that make them bulky but accessible. In this study, we synthesized a novel type of NHC ligand that possesses a bicyclo[2.2.1]­heptane architecture, and we compared five derivatives using copper-catalyzed allylic arylations with aryl Grignard reagents. The regioselectivity of the substitution obviously indicates that a phenyl ring over an active site has a characteristic effect on the resultant copper catalysts when γ-substitution is the major pathway.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.8b02480