Influences of Phenyl Rings on NHC Ligands with Bicyclic Architectures
In addition to phosphanes, olefins, amines, and amides, over the past two decades N-heterocyclic carbene (NHC) has emerged as a useful alternative ligand. Based on a number of derivatization studies on NHC ligands, imidazol-2-ylidene and imidazolin-2-ylidene became the standard heterocyclic form, an...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2019-01, Vol.84 (1), p.128-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In addition to phosphanes, olefins, amines, and amides, over the past two decades N-heterocyclic carbene (NHC) has emerged as a useful alternative ligand. Based on a number of derivatization studies on NHC ligands, imidazol-2-ylidene and imidazolin-2-ylidene became the standard heterocyclic form, and bulky substituents have commonly been introduced on the nitrogen(s) adjacent to carbenic carbons. Our group previously developed NHCs equipped with noncarbenic carbons with a bicyclic architecture that gives them unique steric properties that make them bulky but accessible. In this study, we synthesized a novel type of NHC ligand that possesses a bicyclo[2.2.1]heptane architecture, and we compared five derivatives using copper-catalyzed allylic arylations with aryl Grignard reagents. The regioselectivity of the substitution obviously indicates that a phenyl ring over an active site has a characteristic effect on the resultant copper catalysts when γ-substitution is the major pathway. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/acs.joc.8b02480 |