Development of an Improved IP sub(1) Assay for the Characterization of 5-HT sub(2C) Receptor Ligands

The 5-hydroxytryptamine 2C (5-HT sub(2C)) receptor is a member of the serotonin 5-HT sub(2) subfamily of G-protein-coupled receptors signaling predominantly via the phospholipase C (PLC) pathway. Stimulation of phosphoinositide (PI) hydrolysis upon 5-HT sub(2C) receptor activation is traditionally a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assay and drug development technologies 2010-02, Vol.8 (1), p.106-113
Hauptverfasser: Zhang, J Y, Kowal, D M, Nawoschik, S P, Dunlop, J, Pausch, M H, Peri, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The 5-hydroxytryptamine 2C (5-HT sub(2C)) receptor is a member of the serotonin 5-HT sub(2) subfamily of G-protein-coupled receptors signaling predominantly via the phospholipase C (PLC) pathway. Stimulation of phosphoinositide (PI) hydrolysis upon 5-HT sub(2C) receptor activation is traditionally assessed by measuring inositol monophosphate (IP sub(1)) using time-consuming and labor-intensive anion exchange radioactive assays. In this study, we have developed and optimized a cellular IP sub(1) assay using homogeneous time-resolved fluorescence (HTRF), a fluorescence resonance energy transfer (FKET)-based technology (Cisbio; Gif sur Yvette, France). The measurement is simple to carry out without the cumbersome steps associated with radioactive assays and may therefore be used as an alternative tool to evaluate PI hydrolysis activated by 5-HT sub(2C) agonists. In Chinese hamster ovary (CHO) cells stably expressing 5-HT sub(2C) receptors, characterization of 5-HT sub(2C) agonists with the HTRF platform revealed a rank order of potency (EC sub(50), nM) comparable to that from intracellular calcium mobilization studies measured by the fluorometric imaging plate reader (FLIPR). A similar rank order of potency was seen with conventional radioactive PI assay with the exception of 5-HT. Lastly, the new assay data correlated better with agonistinduced calcium responses in FLIPR (R super(2) = 0.78) than with values determined by radioactive IP sub(1) method (R super(2) = 0.64). Our study shows that the HTRF FRET-based assay detects IP sub(1) with good sensitivity and may be streamlined for high-throughput (HTS) applications.
ISSN:1540-658X
DOI:10.1089/adt.2009.0205