Highly Polymorphic Family of Glycosylphosphatidylinositol-Anchored Surface Antigens with Evidence of Developmental Regulation in Toxoplasma gondii

The life cycle of the apicomplexan parasite Toxoplasma gondii requires that an infectious cyst develop and be maintained throughout the life of the host. The molecules displayed on the parasite surface are important in controlling the immune response to the parasite. T. gondii has a superfamily of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 2008-01, Vol.76 (1), p.103-110
Hauptverfasser: Pollard, Angela M, Onatolu, Krystal N, Hiller, Luisa, Haldar, Kasturi, Knoll, Laura J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The life cycle of the apicomplexan parasite Toxoplasma gondii requires that an infectious cyst develop and be maintained throughout the life of the host. The molecules displayed on the parasite surface are important in controlling the immune response to the parasite. T. gondii has a superfamily of glycosylphosphatidylinositol (GPI)-anchored surface antigens, termed the surface antigen (SAG) and SAG-related surface antigens, that are developmentally regulated during infection. Using a clustering algorithm, we identified a new family of 31 surface proteins that are predicted to be GPI anchored but are unrelated to the SAG proteins, and thus we named these proteins SAG-unrelated surface antigens (SUSA). Analysis of the single nucleotide polymorphism density showed that the members of this family are the most polymorphic genes within the T. gondii genome. Immunofluorescence of SUSA1 and SUSA2, two members of the family, revealed that they are found on the parasite surface. We confirmed that SUSA1 and SUSA2 are GPI anchored by phospholipase cleavage. Analysis of expressed sequence tags (ESTs) revealed that SUSA1 had 22 of 23 ESTs from chronic infection. Analysis of mRNA and protein confirmed that SUSA1 is highly expressed in the chronic form of the parasite. Sera from mice with chronic T. gondii infection reacted to SUSA1, indicating that SUSA1 interacts with the host immune system during infection. This group of proteins likely represents a new family of polymorphic GPI-anchored surface antigens that are recognized by the host's immune system and whose expression is regulated during infection.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.01170-07