Uncovering non-linear structure in human ECG recordings
We employ surrogate data techniques and a new correlation dimension estimation algorithm, the Gaussian kernel algorithm, to uncover non-linearity in human electrocardiogram recordings during normal (sinus) rhythm, ventricular tachycardia (VT) and ventricular fibrillation (VF). We conclude that all t...
Gespeichert in:
Veröffentlicht in: | Chaos, solitons and fractals solitons and fractals, 2002-06, Vol.13 (8), p.1755-1762 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employ surrogate data techniques and a new correlation dimension estimation algorithm, the Gaussian kernel algorithm, to uncover non-linearity in human electrocardiogram recordings during normal (sinus) rhythm, ventricular tachycardia (VT) and ventricular fibrillation (VF). We conclude that all three rhythms are not linear (i.e. distinct from a monotonic non-linear transformation of linearly filtered noise) and have significant correlations over a period greater than the inter-beat interval. Furthermore, we observe that sinus rhythm and VT exhibit a correlation dimension of approximately 2.3 and 2.4, respectively. The correlation dimension of VF exceeds 3.2. The entropy of sinus rhythm, VT and VF is approximately 0.69, 0.55, and 0.67 nats/s, respectively. These results indicate that techniques from non-linear dynamical systems theory should help us understand the mechanism underlying ventricular arrhythmia, and that these rhythms are likely to be a combination of low dimensional chaos and noise. |
---|---|
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.1016/S0960-0779(01)00168-0 |