Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial

Purpose Peptide receptor radionuclide therapy (PRRT) is mostly administered using a fixed injected activity (IA) per cycle. This empiric regime results in highly variable absorbed doses to the critical organs and undertreatment of the majority of patients. We conceived a personalized PRRT protocol i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2019-03, Vol.46 (3), p.728-742
Hauptverfasser: Del Prete, Michela, Buteau, François-Alexandre, Arsenault, Frédéric, Saighi, Nassim, Bouchard, Louis-Olivier, Beaulieu, Alexis, Beauregard, Jean-Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Peptide receptor radionuclide therapy (PRRT) is mostly administered using a fixed injected activity (IA) per cycle. This empiric regime results in highly variable absorbed doses to the critical organs and undertreatment of the majority of patients. We conceived a personalized PRRT protocol in which the IA is adjusted to deliver a prescribed absorbed dose to the kidney, with the aim to safely increase tumour irradiation. We herein report on the initial results of our prospective study of personalized PRRT, the P-PRRT Trial (NCT02754297). Methods PRRT-naïve patients with progressive and/or symptomatic neuroendocrine tumour (NET) were scheduled to receive a four-cycle induction course of 177 Lu-octreotate with quantitative SPECT/CT-based dosimetry. The IA was personalized according to the glomerular filtration rate and the body surface area for the first cycle, and according to the prior renal Gy/GBq for the subsequent cycles. The prescribed renal absorbed dose of 23 Gy was reduced by 25–50% in case of significant renal or haematological impairment. Responders were allowed to receive consolidation or maintenance cycles, for each of which 6 Gy to the kidney were prescribed. We simulated the empiric PRRT regime by fixing the IA at 7.4 GBq per cycle, with the same percentage reductions as above. Radiological, molecular imaging, biochemical, and quality of life responses, as well as safety, were assessed. Results Fifty-two patients underwent 171 cycles. In 34 patients who completed the induction course, a median cumulative IA of 36.1 (range, 6.3–78.6) GBq was administered, and the median cumulative kidney and maximum tumour absorbed doses were 22.1 (range, 8.3–24.3) Gy and 185.7 (range: 15.2–443.1) Gy respectively. Compared with the simulated fixed-IA induction regime, there was a median 1.26-fold increase (range, 0.47–2.12 fold) in the cumulative maximum tumour absorbed dose, which was higher in 85.3% of patients. In 39 assessable patients, the best objective response was partial response in nine (23.1%), minor response in 14 (35.9%), stable disease in 13 (33.3%) and progressive disease in three patients (7.7%). In particular, 11 of 13 patients (84.6%) with pancreatic NET had partial or minor response. The global health status/quality of life score significantly increased in 50% of patients. Acute and subacute side-effects were all of grade 1 or 2, and the most common were nausea (in 32.7% of patients) and fatigue (in 30.8% of patients) respectively. Sub
ISSN:1619-7070
1619-7089
DOI:10.1007/s00259-018-4209-7