Dynamic-force extraction for micro-propulsion testing: Theory and experimental validation

A dynamic-force extraction, based on the least-squares method, is proposed for micro-propulsion testing. Having modeled the displacement oscillation of a micro-newton torsional pendulum, the time evolution of the dynamic force may be calculated if the stand constants are well calibrated. According t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2018-11, Vol.89 (11), p.115110-115110
Hauptverfasser: Wang, Chuansheng, Guan, Changbin, Liu, Xuhui, Wang, Xudong, Li, Fei, Yu, Xilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dynamic-force extraction, based on the least-squares method, is proposed for micro-propulsion testing. Having modeled the displacement oscillation of a micro-newton torsional pendulum, the time evolution of the dynamic force may be calculated if the stand constants are well calibrated. According to the linear characteristic of the motion equation, a reconstruction of the dynamic thrust reduces to solving linear equations. The simulation analysis shows that the error is affected by the sensor noise and the low-pass filter as well as the sampling rate. Validation experiments were performed showing that this method reconstructs the dynamic force well up to 8 Hz with an error less than 15 μN. The noise-induced error moreover varies little with frequency.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.5037365