The relationship between contact lens surface charge and in-vitro protein deposition levels
The adsorption of lysozyme and human serum albumin (HSA) onto hydrogel contact lenses was investigated as a function of lens surface charge. Anionic, cationic and non-ionic contact lenses were deposited using single protein solutions of identical pH and osmolarity. Protein deposition was analyzed us...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2001-12, Vol.22 (24), p.3257-3260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The adsorption of lysozyme and human serum albumin (HSA) onto hydrogel contact lenses was investigated as a function of lens surface charge. Anionic, cationic and non-ionic contact lenses were deposited using single protein solutions of identical pH and osmolarity. Protein deposition was analyzed using matrix assisted laser desorption ionization mass spectrometry (MALDI-ToF MS) and compared to a direct UV protein analysis method, the bicinchoninic acid (BCA) assay. The results showed remarkable consistency between the two techniques.
By inference of results from analyses of sample solutions, lysozyme, a positively charged protein at physiological pH, was only detected on the anionic surface charged contact lenses, presumably a result of electrostatic interactions. Neither the cationic nor the non-ionic lenses deposited lysozyme, possibly due to charge repulsion. HSA, a negatively charged protein at physiological pH, was detected on the cationic lenses, again as a result of electrostatic interactions. The fact that HSA was not observed on either the anionic or non-ionic charged species further demonstrates the effect of charge repulsion. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/S0142-9612(01)00163-6 |