Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes
Short-chain halogenated aliphatics, such as chlorinated ethenes, constitute a large group of priority pollutants. This paper gives an overview on the chemical and physical properties of chlorinated aliphatics that are critical in determining their toxicological characteristics and recalcitrance to b...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2001-02, Vol.85 (2), p.81-102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Short-chain halogenated aliphatics, such as chlorinated ethenes, constitute a large group of priority pollutants. This paper gives an overview on the chemical and physical properties of chlorinated aliphatics that are critical in determining their toxicological characteristics and recalcitrance to biodegradation. The toxic effects and principle metabolic pathways of halogenated ethenes in mammals are briefly discussed. Furthermore, the bacterial degradation of halogenated compounds is reviewed and it is described how product toxicity may explain why most chlorinated ethenes are only degraded cometabolically under aerobic conditions. The cometabolic degradation of chlorinated ethenes by oxygenase-producing microorganisms has been extensively studied. The physiology and bioremediation potential of methanotrophs has been well characterized and an overview of the available data on these organisms is presented. The sensitivity of methanotrophs to product toxicity is a major limitation for the transformation of chlorinated ethenes by these organisms. Most toxic effects arise from the inability to detoxify the reactive chlorinated epoxyethanes occurring as primary metabolites. Therefore, the last part of this review focuses on the metabolic reactions and enzymes that are involved in the detoxification of epoxides in mammals. A key role is played by glutathione
S-transferases. Furthermore, an overview is presented on the current knowledge about bacterial enzymes involved in the metabolism of epoxides. Such enzymes might be useful for detoxifying chlorinated ethene epoxides and an example of a glutathione
S-transferase with activity for dichloroepoxyethane is highlighted. |
---|---|
ISSN: | 0168-1656 1873-4863 |
DOI: | 10.1016/S0168-1656(00)00364-3 |