Effects of double cross-linking technique on the enzymatic degradation and calcification of bovine pericardia

The strength, resorption rates, and biocompatibility of collagenous biomaterials are profoundly influenced by the method of cross-linking. The in vitro and in vivo calcification and enzymatic degradation of bovine pericardia (BP) after a series of surface modifications were studied as a function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomaterials applications 2000, Vol.14 (3), p.273-295
Hauptverfasser: VASUDEV, S. C, CHANDY, T, SHARMA, C. P, MOHANTY, M, UMASANKAR, P. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strength, resorption rates, and biocompatibility of collagenous biomaterials are profoundly influenced by the method of cross-linking. The in vitro and in vivo calcification and enzymatic degradation of bovine pericardia (BP) after a series of surface modifications were studied as a function of exposure time. Collagenase degradations of modified BP were monitored by scanning electron microscopy and tensile strength measurements. Bovine pericardium was modified by a combination of different tissue fixatives such as glutaraldehyde (GA), carbodiimide (EDC), diisocyanate (HMDIC), and polyethylene glycol (PEG). GA-PEG-EDC-PEG and GA-PEG-HMDIC-PEG combination treated BP retained maximum stability in collagenase digestion compared to GATBP. In vitro calcification studies and in vivo rat subcutaneous implantations of modified pericardium have shown substantial reduction in the calcification of double cross-linked BP with PEG modification. Further, the biocompatibility aspects of pericardial tissues were established by platelet adhesion and octane contact angle. It seems that cross-links involving amino and carboxyl residues may provide new ways of controlling biodegradation and calcification.
ISSN:0885-3282
1530-8022
DOI:10.1106/HV9G-JEBF-Q7WU-P5XL