Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression
Extracellular vesicles (EVs) are small-sized membrane-surrounded structures released from cells into the blood, which play important roles in regulating various biological processes. However, the role of EVs in Doxorubicin (DOX)-induced cardiomyocytes senescence remains elusive. In this study, we fo...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular translational research 2019-02, Vol.12 (1), p.45-50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular vesicles (EVs) are small-sized membrane-surrounded structures released from cells into the blood, which play important roles in regulating various biological processes. However, the role of EVs in Doxorubicin (DOX)-induced cardiomyocytes senescence remains elusive. In this study, we found that human serum EVs inhibited DOX-induced senescence in H9C2 cells, which was abolished by miR-34a mimic. Our study also proved that miR-34a mediated DOX-induced H9C2 cell senescence by targeting phosphatase 1 nuclear targeting subunit (PNUTS). In addition to the downregulation of miR-34a, EVs could upregulate the expression of PNUTS. Moreover, the inhibitory effect of serum EVs on DOX-induced H9C2 cell senescence was also impeded by PNUTS siRNA. In conclusion, our study suggests that serum EVs retard H9C2 cell senescence through the miR-34a/PNUTS pathway, providing a potential therapy for cardiac aging. |
---|---|
ISSN: | 1937-5387 1937-5395 |
DOI: | 10.1007/s12265-018-9847-4 |