Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior

Intraneuronal aggregation of TDP-43 is seen in 97% of all amyotrophic lateral sclerosis cases and occurs by a poorly understood mechanism. We developed a simple in vitro model system for the study of full-length TDP-43 aggregation in solution and in protein droplets. We found that soluble, YFP-tagge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2019-02, Vol.58 (6), p.590-607
Hauptverfasser: Sun, Yulong, Medina Cruz, Alison, Hadley, Kevin C, Galant, Natalie J, Law, Ryan, Vernon, Robert M, Morris, Vanessa K, Robertson, Janice, Chakrabartty, Avijit
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intraneuronal aggregation of TDP-43 is seen in 97% of all amyotrophic lateral sclerosis cases and occurs by a poorly understood mechanism. We developed a simple in vitro model system for the study of full-length TDP-43 aggregation in solution and in protein droplets. We found that soluble, YFP-tagged full-length TDP-43 (yTDP-43) dimers can be produced by refolding in low-salt HEPES buffer; these solutions are stable for several weeks. We found that physiological electrolytes induced reversible aggregation of yTDP-43 into 10–50 nm tufted particles, without amyloid characteristics. The order of aggregation induction potency was K+ < Na+ < Mg2+ < Ca2+, which is the reverse of the Hofmeister series. The kinetics of aggregation were fit to a single-step model, and the apparent rate of aggregation was affected by yTDP-43 and NaCl concentrations. While yTDP-43 alone did not form stable liquid droplets, it partitioned into preformed Ddx4N1 droplets, showing dynamic diffusion behavior consistent with liquid–liquid phase transition, but then aggregated over time. Aggregation of yTDP-43 in droplets also occurred rapidly in response to changes in electrolyte concentrations, mirroring solution behavior. This was accompanied by changes to droplet localization and solvent exchange. Exposure to extracellular-like electrolyte conditions caused rapid aggregation at the droplet periphery. The aggregation behavior of yTDP-43 is controlled by ion-specific effects that occur at physiological concentrations, suggesting a mechanistic role for local electrolyte concentrations in TDP-43 proteinopathies.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.8b00842