Intermediate States Directed Chiral Transfer on a Silver Surface

Chiral synthesis on surfaces has acquired tremendous interest. We herein report a novel approach of two-dimensional chiral transfer directed by metal–organic intermediate states on a silver surface. With initial deposition at low temperature, the achiral 4,4′-dihydroxybiphenyl molecules self-assembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-01, Vol.141 (1), p.168-174
Hauptverfasser: Yang, Biao, Cao, Nan, Ju, Huanxin, Lin, Haiping, Li, Youyong, Ding, Honghe, Ding, Jinqiang, Zhang, Junjie, Peng, Chencheng, Zhang, Haiming, Zhu, Junfa, Li, Qing, Chi, Lifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chiral synthesis on surfaces has acquired tremendous interest. We herein report a novel approach of two-dimensional chiral transfer directed by metal–organic intermediate states on a silver surface. With initial deposition at low temperature, the achiral 4,4′-dihydroxybiphenyl molecules self-assemble into large scale two-dimensional networks with 4-fold symmetry via intermolecular hydrogen bonding. Fine controlled annealing, however, leads to the formation of tetramer-like chiral metal–organic hybrids, which self-organize into enantiomeric islands on the Ag(100) surface. Subsequent ortho C–C couplings of the reactants lead to dimer products. Of great importance, the chirality expressions of the dimer products are observed to be transferred directly from that of the tetramer intermediate states. The detailed reaction pathways are rationalized by DFT calculations and synchrotron-based XPS experiments, demonstrating the mechanisms of the chiral transfer.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.8b05699