Sorbitol-penetration enhancer containing vesicles loaded with baicalin for the protection and regeneration of skin injured by oxidative stress and UV radiation
[Display omitted] Aiming at improving the protective effects of baicalin on the skin, new highly-biocompatible penetration enhancer containing vesicles (PEVs) were developed by modifying the base formulation of transfersomes with sorbitol, thus obtaining sorbitol-PEVs. An extensive evaluation of the...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2019-01, Vol.555, p.175-183 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Aiming at improving the protective effects of baicalin on the skin, new highly-biocompatible penetration enhancer containing vesicles (PEVs) were developed by modifying the base formulation of transfersomes with sorbitol, thus obtaining sorbitol-PEVs. An extensive evaluation of the physico-chemical features of both transfersomes and sorbitol-PEVs was carried out. Transfersomes were mainly close-packed, multi-compartment vesicles, while sorbitol-PEVs appeared mostly as single, spherical, unilamellar vesicles. All the vesicles were small in size (∼128 nm) and negatively charged (∼−67 mV), without significant differences between the formulations. The in vitro delivery of baicalin to intact skin showed an improved ability of sorbitol-PEVs to favour the deposition of the flavonoid into the whole skin. In addition, the vesicular formulations protected keratinocytes and fibroblasts from oxidative stress and UV radiation, and promoted cell proliferation and migration, which favoured the closure of skin wound. Cell uptake was promoted as well, especially when sorbitol-PEVs were used. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2018.11.053 |