Clay-enhanced electrochemiluminescence and its application in the detection of glucose
Clay-modified electrodes were prepared with montmorillonite K10 and characterized in their ability to enhance the electrogenerated chemiluminescence (ECL) in a solution containing luminol and hydrogen peroxide. Montmorillonite K10 proved to be an effective catalyst for such a purpose, according to t...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1998-08, Vol.145 (8), p.2654-2659 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clay-modified electrodes were prepared with montmorillonite K10 and characterized in their ability to enhance the electrogenerated chemiluminescence (ECL) in a solution containing luminol and hydrogen peroxide. Montmorillonite K10 proved to be an effective catalyst for such a purpose, according to the anodic current and ECL intensity measured with the electrodes with and without clay particles. Under optimum conditions (pH 10 and 0.8 V vs. SCE), the ECL was enhanced by a factor of 10. Control experiments showed the enhanced ECL is likely due to a facilitation in the oxidation of luminol and H sub(2)O sub(2) by the iron species contained in the clay. Double-step potential techniques suggested that superoxide is very likely to be the key reactive oxygen species involved in the clay-enhanced ECL reaction. In addition, clay/luminol/GOx electrodes were constructed by using aminopropyltrimethoxysilane as an immobilizing agent for the detection of glucose. Although the electrode sensitivity decreased by ca. 15% after 10 days, a linear calibration curve was attained, covering the concentrations of glucose from 10 mu M to 0.5 mM with a detection limit at ca. 10 mu M at pH 10. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1.1838695 |