Fabrication and design of mechanically stable and free-standing polymeric membrane with two-level apertures
Herein, we report the fabrication process and the investigation of mechanically stable, flexible and free-standing polymeric membranes with two-level apertures. By using overlapped oxygen inhibition layers (OILs) with variation in diameters of the micro-sized supporting layer, we successfully fabric...
Gespeichert in:
Veröffentlicht in: | Soft matter 2018-12, Vol.14 (47), p.9522-9527 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, we report the fabrication process and the investigation of mechanically stable, flexible and free-standing polymeric membranes with two-level apertures. By using overlapped oxygen inhibition layers (OILs) with variation in diameters of the micro-sized supporting layer, we successfully fabricated the mechanically stable and free-standing polymeric membrane with micro/nano two-level apertures. The nano aperture membrane was stably sustained on the micro aperture membrane with a diameter of 50 μm and 100 μm, but was torn off in the case of 300 μm and 500 μm sized supporting layers. To analyze the results, we propose a simple model to set the criteria of the geometrical features which are mechanically stable during the demolding process. It is worth noting that an appropriate material modulus, length, and thickness of the membrane are required for designing and achieving the robust free-standing hierarchical polymeric membrane. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c8sm01968a |