Trabecular bone functional adaptation and sexual dimorphism in the human foot
Objectives Trabecular bone adapts to the strains placed upon the skeleton during life. Anthropological research has largely focused on linking variation in primate trabecular bone to locomotor mode, to provide a context for interpreting fossil morphology. However, intraspecific variation and its und...
Gespeichert in:
Veröffentlicht in: | American journal of physical anthropology 2019-01, Vol.168 (1), p.154-169 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives
Trabecular bone adapts to the strains placed upon the skeleton during life. Anthropological research has largely focused on linking variation in primate trabecular bone to locomotor mode, to provide a context for interpreting fossil morphology. However, intraspecific variation and its underlying mechanisms are still poorly understood. Trabecular bone is influenced by a variety of factors including body mass, age, diet, temperature, genetics, sex, and behavior. Before trabecular structure can be used to infer habitual behavior in the past, the effects of these factors need to be understood. In this article, we examine variation in trabecular structure in the human foot in four archaeological groups in relation to inferred levels of terrestrial mobility and sex.
Materials and methods
We use high‐resolution μCT scanning to examine variation in trabecular structure in the human calcaneus, talus, and first metatarsal in two relatively mobile and two relatively sedentary archaeological groups.
Results
The four population samples show similar patterns of trabecular variation throughout the foot, influenced by mechanical loading. Greater inferred terrestrial mobility is associated with greater bone volume fraction and thicker, more widely spaced, and less interconnected trabeculae. However, contrary to diaphyseal rigidity, only limited sexual dimorphism was found in trabecular structure.
Discussion
This work demonstrates that trabecular bone may serve as a useful proxy of habitual behavior in the fossil and archaeological record when other factors are carefully considered. However, the mechanisms underlying sexual dimorphism are not well understood. As such, inferring sex differences in habitual behavior is currently challenging. |
---|---|
ISSN: | 0002-9483 1096-8644 2692-7691 |
DOI: | 10.1002/ajpa.23732 |