Trabecular bone functional adaptation and sexual dimorphism in the human foot

Objectives Trabecular bone adapts to the strains placed upon the skeleton during life. Anthropological research has largely focused on linking variation in primate trabecular bone to locomotor mode, to provide a context for interpreting fossil morphology. However, intraspecific variation and its und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physical anthropology 2019-01, Vol.168 (1), p.154-169
Hauptverfasser: Saers, Jaap P. P., Ryan, Timothy M., Stock, Jay T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives Trabecular bone adapts to the strains placed upon the skeleton during life. Anthropological research has largely focused on linking variation in primate trabecular bone to locomotor mode, to provide a context for interpreting fossil morphology. However, intraspecific variation and its underlying mechanisms are still poorly understood. Trabecular bone is influenced by a variety of factors including body mass, age, diet, temperature, genetics, sex, and behavior. Before trabecular structure can be used to infer habitual behavior in the past, the effects of these factors need to be understood. In this article, we examine variation in trabecular structure in the human foot in four archaeological groups in relation to inferred levels of terrestrial mobility and sex. Materials and methods We use high‐resolution μCT scanning to examine variation in trabecular structure in the human calcaneus, talus, and first metatarsal in two relatively mobile and two relatively sedentary archaeological groups. Results The four population samples show similar patterns of trabecular variation throughout the foot, influenced by mechanical loading. Greater inferred terrestrial mobility is associated with greater bone volume fraction and thicker, more widely spaced, and less interconnected trabeculae. However, contrary to diaphyseal rigidity, only limited sexual dimorphism was found in trabecular structure. Discussion This work demonstrates that trabecular bone may serve as a useful proxy of habitual behavior in the fossil and archaeological record when other factors are carefully considered. However, the mechanisms underlying sexual dimorphism are not well understood. As such, inferring sex differences in habitual behavior is currently challenging.
ISSN:0002-9483
1096-8644
2692-7691
DOI:10.1002/ajpa.23732