New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer
Epithelial–mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell–cell and cell–extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other a...
Gespeichert in:
Veröffentlicht in: | Nature reviews. Molecular cell biology 2019-02, Vol.20 (2), p.69-84 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epithelial–mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell–cell and cell–extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
Epithelial–mesenchymal transition (EMT) is crucial for embryogenesis, wound healing and cancer development, and confers greater resistance to cancer therapies. This Review discusses the mechanisms of EMT and its roles in normal and neoplastic tissues, the contribution of cell-intrinsic signals and the microenvironment to inducing EMT, and its effects on the immunobiology of carcinomas. |
---|---|
ISSN: | 1471-0072 1471-0080 |
DOI: | 10.1038/s41580-018-0080-4 |