Design of Novel Self-Healing Thermoplastic Vulcanizates Utilizing Thermal/Magnetic/Light-Triggered Shape Memory Effects
We designed novel self-healing thermoplastic vulcanizates (TPVs), achieving excellent thermal/magnetic/light-triggered shape memory assisted self-healing behavior. Damage on polylactide (PLA)/epoxidized natural rubber (ENR)/Fe3O4 TPVs could be healed via three events synergistically: the shape memor...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-12, Vol.10 (48), p.40996-41002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We designed novel self-healing thermoplastic vulcanizates (TPVs), achieving excellent thermal/magnetic/light-triggered shape memory assisted self-healing behavior. Damage on polylactide (PLA)/epoxidized natural rubber (ENR)/Fe3O4 TPVs could be healed via three events synergistically: the shape memory effect of TPVs resulted in the physical contact of damaged surfaces; the desorption–absorption of ENR/Fe3O4-bound rubber promoted interdiffusion of ENR chains, leading to the self-healing of ENR phase; ENR was grafted onto PLA segments to assist PLA rearranging and entangling again to achieve the repair of TPVs. This self-healing TPV is reported for the first time and paves the way to design next-generation self-healing materials. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b18212 |