The interplay between copper(II), human serum albumin, fatty acids, and carbonylating agent interferes with Cys 34 thiol reactivity and copper binding

Cys34 thiol group of human serum albumin (HSA) represents major plasma antioxidant. Its reactivity is influenced by multiple factors. The influence of fatty acids (FA; saturated, mono, and poly unsaturated acids from fish oil) binding to HSA, on copper(II) binding affinity and Cys34 thiol group acce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological inorganic chemistry 2019-02, Vol.24 (1), p.61-70
Hauptverfasser: Penezić, Ana Z., Aćimović, Jelena M., Pavićević, Ivan D., Jovanović, Vesna B., Takić, Marija, Mandić, Ljuba M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cys34 thiol group of human serum albumin (HSA) represents major plasma antioxidant. Its reactivity is influenced by multiple factors. The influence of fatty acids (FA; saturated, mono, and poly unsaturated acids from fish oil) binding to HSA, on copper(II) binding affinity and Cys34 thiol group accessibility/reactivity, in the presence of carbonylation agent (methylglyoxal, MG) was examined. HSA–copper(II) content, thiol group reactivity, and HSA carbonylation level were monitored spectrophotometrically. Changes in HSA were followed by fluorescence spectroscopy and native PAG electrophoresis. FA/HSA molar ratio was screened by GC. Together, binding of copper(II) ions and FA to HSA increase the reactivity of Cys34 thiol group (depending on the type of FA), with constant contribution of copper(II) ions of one-third. Carbonylation of FA–HSA–Cu(II) complexes caused a decrease in the Cys34 thiol group content, accompanied by a decrease in the content of HSA-bound copper. The carbonylation level of guanidine groups was not affected by FAs and copper(II) binding. Fluorescent emission spectra of FA–HSA–Cu(II)–MG complexes showed conformational changes in HSA molecule. Although binding of fatty acids and copper ions caused a significant increase in the thiol group reactivity, Cys34 thiol from FA–HSA–Cu(II) complexes reacted with MG in smaller extent than expected, probably as a consequence of conformational changes introduced by carbonylation. Increase in the percentage of reacted-free thiol groups with MG (due to FA and copper binding) may not seem to be very significant, but it is very important in complex biological systems, where catalytic metal is present. Graphical abstract
ISSN:0949-8257
1432-1327
DOI:10.1007/s00775-018-1628-7