Using SERS To Understand the Binding of N‑Heterocyclic Carbenes to Gold Surfaces

Surface functionalization is an essential component of most applications of noble-metal surfaces. Thiols and amines are traditionally employed to attach molecules to noble-metal surfaces, but they have limitations. A growing body of research, however, suggests that N-heterocyclic carbenes (NHCs) can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-12, Vol.9 (23), p.6779-6785
Hauptverfasser: Trujillo, Michael J, Strausser, Shelby L, Becca, Jeffrey C, DeJesus, Joseph F, Jensen, Lasse, Jenkins, David M, Camden, Jon P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface functionalization is an essential component of most applications of noble-metal surfaces. Thiols and amines are traditionally employed to attach molecules to noble-metal surfaces, but they have limitations. A growing body of research, however, suggests that N-heterocyclic carbenes (NHCs) can be readily employed for surface functionalization with superior chemical stability compared with thiols. We demonstrate the power of surface-enhanced Raman scattering combined with theory to present a comprehensive picture of NHC binding to gold surfaces. In particular, we synthesize a library of NHC isotopologues and use surface-enhanced Raman scattering to record the vibrational spectra of these NHCs while bound to gold surfaces. Our experimental data are compared with first-principles theory, yielding numerous new insights into the binding of NHCs to gold surfaces. In addition to these insights, we expect our approach to be a general method for probing the local surface properties of NHC-functionalized surfaces for their expanding use in sensing applications.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b02764