Response of the Skyrmion Lattice in MnSi to Cubic Magnetocrystalline Anisotropies
We report high-precision small-angle neutron scattering of the orientation of the Skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the Skyrmion lattice may be accurately described as a triple-Q[over →] state, where the...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (18), p.187205-187205, Article 187205 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report high-precision small-angle neutron scattering of the orientation of the Skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the Skyrmion lattice may be accurately described as a triple-Q[over →] state, where the modulus |Q[over →]| is constant and the wave vectors enclose rigid angles of 120°. Along a great circle across ⟨100⟩, ⟨110⟩, and ⟨111⟩ the normal to the Skyrmion-lattice plane varies systematically by ±3° with respect to the field direction, while the in-plane alignment displays a reorientation by 15° for magnetic field along ⟨100⟩. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, which is determined by the symmetries of the tetrahedral point group T and includes contributions up to sixth order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the Skyrmion lattice in MnSi. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.187205 |