Oscillating Electric Fields in Liquids Create a Long-Range Steady Field
We demonstrate that application of an oscillatory electric field to a liquid yields a long-range steady field, provided the ions present have unequal mobilities. The main physics is illustrated by a two-ion harmonic oscillator, yielding an asymmetric rectified field whose time average scales as the...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-11, Vol.121 (18), p.185504-185504, Article 185504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that application of an oscillatory electric field to a liquid yields a long-range steady field, provided the ions present have unequal mobilities. The main physics is illustrated by a two-ion harmonic oscillator, yielding an asymmetric rectified field whose time average scales as the square of the applied field strength. Computations of the fully nonlinear electrokinetic model corroborate the two-ion model and further demonstrate that steady fields extend over large distances between two electrodes. Experimental measurements of the levitation height of micron-scale colloids versus applied frequency accord with the numerical predictions. The heretofore unsuspected existence of a long-range steady field helps explain several long-standing questions regarding the behavior of particles and electrically induced fluid flows in response to oscillatory potentials. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.121.185504 |