Oscillating Electric Fields in Liquids Create a Long-Range Steady Field

We demonstrate that application of an oscillatory electric field to a liquid yields a long-range steady field, provided the ions present have unequal mobilities. The main physics is illustrated by a two-ion harmonic oscillator, yielding an asymmetric rectified field whose time average scales as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-11, Vol.121 (18), p.185504-185504, Article 185504
Hauptverfasser: Hashemi Amrei, S M H, Bukosky, Scott C, Rader, Sean P, Ristenpart, William D, Miller, Gregory H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that application of an oscillatory electric field to a liquid yields a long-range steady field, provided the ions present have unequal mobilities. The main physics is illustrated by a two-ion harmonic oscillator, yielding an asymmetric rectified field whose time average scales as the square of the applied field strength. Computations of the fully nonlinear electrokinetic model corroborate the two-ion model and further demonstrate that steady fields extend over large distances between two electrodes. Experimental measurements of the levitation height of micron-scale colloids versus applied frequency accord with the numerical predictions. The heretofore unsuspected existence of a long-range steady field helps explain several long-standing questions regarding the behavior of particles and electrically induced fluid flows in response to oscillatory potentials.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.121.185504