Customizable 3D-printed architecture with ZnO-based hierarchical structures for enhanced photocatalytic performance

ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs) and nanoflowers (NFs) on a 3D-printed backbone were effectively fabricated via the combination of the fused deposition modelling (FDM) 3D-printing technique and hydrothermal reaction. The photocatalytic performance of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-11, Vol.10 (46), p.21696-21702
Hauptverfasser: Son, Soomin, Jung, Pil-Hoon, Park, Jaemin, Chae, Dongwoo, Huh, Daihong, Byun, Minseop, Ju, Sucheol, Lee, Heon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ZnO-based hierarchical structures including nanoparticles (NPs), nanorods (NRs) and nanoflowers (NFs) on a 3D-printed backbone were effectively fabricated via the combination of the fused deposition modelling (FDM) 3D-printing technique and hydrothermal reaction. The photocatalytic performance of the ZnO-based hierarchical structures on the 3D-backbone was verified via the degradation of the organic pollutant methylene blue, which was monitored by UV-vis spectroscopy. The new photocatalytic architectures used in this investigation give an effective approach and wide applicability to overcome the limitation of photocatalysts such as secondary removal photocatalyst processes.
ISSN:2040-3364
2040-3372
DOI:10.1039/c8nr06788k