High-Pressure Synthesis of A2 NiO2 Ag2 Se2 (A=Sr, Ba) with a High-Spin Ni2+ in Square-Planar Coordination
Square-planar coordinate Ni2+ ions in oxides are exclusively limited to a low-spin state (S=0) owing to extensive crystal field splitting. Layered oxychalcogenides A2 NiII O2 Ag2 Se2 (A=Sr, Ba) with the S=1 NiO2 square lattice are now reported. The structural analysis revealed that the Ni2+ ion is u...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2019-01, Vol.58 (3), p.756 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Square-planar coordinate Ni2+ ions in oxides are exclusively limited to a low-spin state (S=0) owing to extensive crystal field splitting. Layered oxychalcogenides A2 NiII O2 Ag2 Se2 (A=Sr, Ba) with the S=1 NiO2 square lattice are now reported. The structural analysis revealed that the Ni2+ ion is under-bonded by a significant tensile strain from neighboring Ag2 Se2 layers, leading to the reduction in crystal field splitting. Ba2 NiO2 Ag2 Se2 exhibits a G-type spin order at 130 K, indicating fairly strong in-plane interactions. The high-pressure synthesis employed here possibly assists the expansion of NiO2 square lattice by taking the advantage of the difference in compressibility in oxide and selenide layers.Square-planar coordinate Ni2+ ions in oxides are exclusively limited to a low-spin state (S=0) owing to extensive crystal field splitting. Layered oxychalcogenides A2 NiII O2 Ag2 Se2 (A=Sr, Ba) with the S=1 NiO2 square lattice are now reported. The structural analysis revealed that the Ni2+ ion is under-bonded by a significant tensile strain from neighboring Ag2 Se2 layers, leading to the reduction in crystal field splitting. Ba2 NiO2 Ag2 Se2 exhibits a G-type spin order at 130 K, indicating fairly strong in-plane interactions. The high-pressure synthesis employed here possibly assists the expansion of NiO2 square lattice by taking the advantage of the difference in compressibility in oxide and selenide layers. |
---|---|
ISSN: | 1521-3773 1521-3773 |
DOI: | 10.1002/anie.201810161 |