Parameter estimation for signals from compact binary inspirals injected into LIGO data
During the fifth science run of the Laser Interferometer Gravitational-Wave Observatory (LIGO), signals modelling the gravitational waves emitted by coalescing non-spinning compact-object binaries were injected into the LIGO data stream. We analysed the data segments into which such injections were...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2009-10, Vol.26 (20), p.204010-204010 (10) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the fifth science run of the Laser Interferometer Gravitational-Wave Observatory (LIGO), signals modelling the gravitational waves emitted by coalescing non-spinning compact-object binaries were injected into the LIGO data stream. We analysed the data segments into which such injections were made using a Bayesian approach, implemented as a Markov-chain Monte Carlo technique in our code SPINspiral. This technique enables us to determine the physical parameters of such a binary inspiral, including masses and spin, following a possible detection trigger. For the first time, we publish the results of a realistic parameter-estimation analysis of waveforms embedded in real detector noise. We used both spinning and non-spinning waveform templates for the data analysis and demonstrate that the intrinsic source parameters can be estimated with an accuracy of better than 1-3% in the chirp mass and 0.02-0.05 (8-20%) in the symmetric mass ratio if non-spinning waveforms are used. We also find a bias between the injected and recovered parameters, and attribute it to the difference in the post-Newtonian orders of the waveforms used for injection and analysis. |
---|---|
ISSN: | 0264-9381 1361-6382 |
DOI: | 10.1088/0264-9381/26/20/204010 |