Robotic surgical rehearsal on patient-specific 3D-printed skull models for stereoelectroencephalography (SEEG)

Purpose Medically refractory epilepsy patients commonly require surgical alternatives for diagnosis and treatment. Stereoelectroencephalography (SEEG) is a useful diagnostic procedure in seizure focus elucidation. Modern techniques involve the use of robotics and neuronavigation for SEEG. A steep le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2019-01, Vol.14 (1), p.139-145
Hauptverfasser: Camara, Divaldo, Panov, Fedor, Oemke, Holly, Ghatan, Saadi, Costa, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Medically refractory epilepsy patients commonly require surgical alternatives for diagnosis and treatment. Stereoelectroencephalography (SEEG) is a useful diagnostic procedure in seizure focus elucidation. Modern techniques involve the use of robotics and neuronavigation for SEEG. A steep learning curve combined with multiple complex technologies employed during the case makes this procedure a perfect candidate for surgical rehearsal. This paper tests the feasibility of the use of patient-specific 3D-printed model for surgical rehearsal of robotic SEEG. Methods A 3D-printed model was created using the patient’s cranial computed tomography and computed tomography angiography radiological imaging. A rehearsal in an operating room (OR) prior to the actual procedure date was used for surgical planning of SEEG electrodes, education of the residents and fellows as well as training of the support staff. Attention was paid to assure precise recreation of the surgical procedure. Results The patient-specific 3D-printed model tolerated each step of the procedure from facial registration, to drilling, bolt insertion and lead placement. Accuracy of the designed trajectory to the electrode final position was visually confirmed at the end of procedure. Important modification to the plan of eventual surgery improved the efficiency of the real operation. Conclusion For surgical planning, education and training purposes in robotic SEEG, 3D-printed models may be utilized as a realistic anatomy tool. Potential applications of this technique include trajectory feasibility evaluation, patient positioning optimization, increasing OR efficiency, as well as neurosurgical education and patient counseling.
ISSN:1861-6410
1861-6429
DOI:10.1007/s11548-018-1885-5