Free Radical–Initiated Peptide Sequencing Mass Spectrometry for Phosphopeptide Post-translational Modification Analysis
Free radical–initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a lo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2019-03, Vol.30 (3), p.538-547 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Free radical–initiated peptide sequencing mass spectrometry (FRIPS MS) was employed to analyze a number of representative singly or doubly protonated phosphopeptides (phosphoserine and phosphotyrosine peptides) in positive ion mode. In contrast to collision-activated dissociation (CAD) results, a loss of a phosphate group occurred to a limited degree for both phosphoserine and phosphotyrosine peptides, and thus, localization of a phosphorylated site was readily achieved. Considering that FRIPS MS supplies a substantial amount of collisional energy to peptides, this result was quite unexpected because a labile phosphate group was conserved. Analysis of the resulting peptide fragments revealed the extensive production of
a
-,
c
-,
x
-, and
z
-type fragments (with some minor
b
- and
y
-type fragments), suggesting that radical-driven peptide fragmentation was the primary mechanism involved in the FRIPS MS of phosphopeptides. Results of this study clearly indicate that FRIPS MS is a promising tool for the characterization of post-translational modifications such as phosphorylation.
Graphical Abstract |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1007/s13361-018-2100-1 |