The extent of drug-drug interaction between amlodipine and activated charcoal is attenuated by food intake in rats
Activated charcoal decreases gastrointestinal absorption of concomitantly administered drugs. The absorption of amlodipine (AML) was reported as almost completely attenuated by 25 g of activated charcoal under a fasted condition, but not affected by 2 g of activated charcoal under a fed condition. H...
Gespeichert in:
Veröffentlicht in: | Drug metabolism and pharmacokinetics 2019-02, Vol.34 (1), p.108-110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Activated charcoal decreases gastrointestinal absorption of concomitantly administered drugs. The absorption of amlodipine (AML) was reported as almost completely attenuated by 25 g of activated charcoal under a fasted condition, but not affected by 2 g of activated charcoal under a fed condition. However, it is not clear whether this difference resulted from the food intake or the dose of activated charcoal. The aim of this study was to quantitatively evaluate the effect of food intake on drug interactions caused by adsorption to activated charcoal in the gastrointestinal tract in rats. The rats were orally administered 0.08 mg/kg of AML, with or without 33 mg/kg of activated charcoal, under the fasted or fed condition and the plasma concentration profiles of AML were monitored. For the fed group, the standard breakfast used in clinical studies was smashed and administered at a dose of 11 g/kg. The AUC value of AML under the fasted condition was significantly decreased to 24.8% by coadministration of activated charcoal. On the other hand, activated charcoal moderately decreased the AUC value of AML to 74.8% under the fed condition. These results suggest that the extent of drug interactions caused by activated charcoal is attenuated by food intake.
[Display omitted] |
---|---|
ISSN: | 1347-4367 1880-0920 |
DOI: | 10.1016/j.dmpk.2018.08.008 |