Novel Symmetrical Benzazolyl Derivatives Endowed with Potent Anti-Heparanase Activity
Heparanase is the only mammalian endo-β-d-glucuronidase involved in a variety of major diseases. The up-regulation of heparanase expression increases tumor size, angiogenesis, and metastasis, representing a validated target in the anti-cancer field. To date, only a few small-molecule inhibitors have...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2018-12, Vol.61 (23), p.10834-10859 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heparanase is the only mammalian endo-β-d-glucuronidase involved in a variety of major diseases. The up-regulation of heparanase expression increases tumor size, angiogenesis, and metastasis, representing a validated target in the anti-cancer field. To date, only a few small-molecule inhibitors have been described, but none have gotten through pre-clinical development. Previously, we explored 2-(4-(4-(bromo-methoxybenzamido)benzylamino)phenyl) benzazole derivatives as anti-heparanase agents, proposing this scaffold for development of broadly effective heparanase inhibitors. Herein, we report an extended investigation of new symmetrical 2-aminophenyl-benzazolyl-5-acetate derivatives, proving that symmetrical compounds are more effective than asymmetrical analogues, with the most-potent compound, 7g, being active at nanomolar concentration against heparanase. Molecular docking studies were performed on the best-acting compounds 5c and 7g to rationalize their interaction with the enzyme. Moreover, invasion assay confirmed the anti-metastatic potential of compounds 5c, 7a, and 7g, proving the inhibition of the expression of proangiogenic factors in tumor cells. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.8b01497 |