Promoted Glycerol Oxidation Reaction in an Interface‐Confined Hierarchically Structured Catalyst

Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D‐confined system consisting of intercalated Pt nanosheets within few‐layered graphene is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-01, Vol.31 (2), p.e1804763-n/a
Hauptverfasser: Chen, Zhongxin, Liu, Cuibo, Zhao, Xiaoxu, Yan, Huan, Li, Jing, Lyu, Pin, Du, Yonghua, Xi, Shibo, Chi, Kai, Chi, Xiao, Xu, Haisen, Li, Xing, Fu, Wei, Leng, Kai, Pennycook, Stephen J., Wang, Shuai, Loh, Kian Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D‐confined system consisting of intercalated Pt nanosheets within few‐layered graphene is demonstrated. The strong metal–substrate interaction between the Pt nanosheets and the graphene leads to the quasi‐2D growth of Pt with a unique (100)/(111)/(100) faceted structure, thus providing excellent catalytic activity and selectivity toward one‐carbon (C1) products for the glycerol oxidation reaction. A hierarchically porous graphene architecture, grown on carbon cloth, is used to fabricate the confined catalyst bed in order to enhance the mass‐diffusion limitation in interface‐confined reactions. Owing to its unique 3D porous structure, this graphene‐confined Pt catalyst exhibits an extraordinary mass activity of 2910 mA mgPt −1 together with a formate selectivity of 79% at 60 °C. This paves the way toward rational designs of heterogeneous catalysts for energy‐related applications. The confinement of Pt nanosheets is realized in a vertically erected graphene array with hierarchically porous architecture to address the mass‐diffusion limitation in interface‐confined catalysis. Such a confined 3D catalyst exhibits a much stronger oxidation and CC bond cleaving ability for the glycerol oxidation reaction, leading to superior mass activity and selectivity toward C1 products than commercial Pt/C catalysts.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201804763