Optimising sampling patterns for bi-exponentially decaying signals
A recently reported method, based on the Cramér-Rao Lower Bound theory, for optimising sampling patterns for a wide range of nuclear magnetic resonance (NMR) experiments is applied to the problem of optimising sampling patterns for bi-exponentially decaying signals. Sampling patterns are optimised b...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance imaging 2019-02, Vol.56, p.14-18 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A recently reported method, based on the Cramér-Rao Lower Bound theory, for optimising sampling patterns for a wide range of nuclear magnetic resonance (NMR) experiments is applied to the problem of optimising sampling patterns for bi-exponentially decaying signals. Sampling patterns are optimised by minimizing the percentage error in estimating the most difficult to estimate parameter of the bi-exponential model, termed the objective function. The predictions of the method are demonstrated in application to pulsed field gradient NMR data recorded for the two-component diffusion of a binary mixture of methane/ethane in a zeolite. It is shown that the proposed method identifies an optimal sampling pattern with the predicted objective function being within 10% of that calculated from the experiment dataset. The method is used to advise on the number of sampled points and the noise level needed to resolve two-component systems characterised by a range of ratios of populations and diffusion coefficients. It is subsequently illustrated how the method can be used to reduce the experiment acquisition time while still being able to resolve a given two-component system. |
---|---|
ISSN: | 0730-725X 1873-5894 |
DOI: | 10.1016/j.mri.2018.09.029 |