Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF- B activation in normal human bronchial epithelial cells
Cigarette smoke is a powerful inducer of inflammatory responses resulting in disruption of major cellular pathways with transcriptional and genomic alterations driving the cells towards carcinogenesis. Cell culture and animal model studies indicate that (-)-epigallocatechin-3-gallate (EGCG), the maj...
Gespeichert in:
Veröffentlicht in: | Oncogene 2007-02, Vol.26 (5), p.673-682 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cigarette smoke is a powerful inducer of inflammatory responses resulting in disruption of major cellular pathways with transcriptional and genomic alterations driving the cells towards carcinogenesis. Cell culture and animal model studies indicate that (-)-epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea, possesses potent anti-inflammatory and antiproliferative activity capable of selectively inhibiting cell growth and inducing apoptosis in cancer cells without adversely affecting normal cells. Here, we demonstrate that EGCG pretreatment (20-80 microM) of normal human bronchial epithelial cells (NHBE) resulted in significant inhibition of cigarette smoke condensate (CSC)-induced cell proliferation. Nuclear factor-kappaB (NF-kappaB) controls the transcription of genes involved in immune and inflammatory responses. In most cells, NF-kappaB prevents apoptosis by mediating cell survival signals. Pretreatment of NHBE cells with EGCG suppressed CSC-induced phosphorylation of IkappaBalpha, and activation and nuclear translocation of NF-kappaB/p65. NHBE cells transfected with a luciferase reporter plasmid containing an NF-kappaB-inducible promoter sequence showed an increased reporter activity after CSC exposure that was specifically inhibited by EGCG pretreatment. Immunoblot analysis showed that pretreatment of NHBE cells with EGCG resulted in a significant downregulation of NF-kappaB-regulated proteins cyclin D1, MMP-9, IL-8 and iNOS. EGCG pretreatment further inhibited CSC-induced phosphorylation of ERK1/2, JNK and p38 MAPKs and resulted in a decreased expression of PI3K, AKT and mTOR signaling molecules. Taken together, our data indicate that EGCG can suppress NF-kappaB activation as well as other pro-survival pathways such as PI3K/AKT/mTOR and MAPKs in NHBE cells, which may contribute to its ability to suppress inflammation, proliferation and angiogenesis induced by cigarette smoke. |
---|---|
ISSN: | 0950-9232 1476-5594 |
DOI: | 10.1038/sj.onc.1209829 |